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Simple derivation of a formula for y,, (r; xXr;)

M A Rashid

Mathematics Department, Ahmadu Bello University, Zaria, Nigeria
Received 6 March 1980

Abstract. A simple and straightforward derivation of an expression recently obtained by
Hage Hassan et al for yy,,,(ry X rz) in terms of Yy,,,,,(61, #1) and Yp,,m,(82, ¢2) is presented.

Hage Hassan et al (1980) have recently obtained the interesting result
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and used it to obtain a possibly new sum rule for the 3 symbols. It seems that both of
their derivations are involved. We are presenting below a simple and straightforward
derivation which avoids making use of various generating functions which are not so
well known.

Indeed from structural considerations

Yim(Pixr)= Y {l, my; by mall, m)as iyt Y 1,m, (81, 01) Y tymy (82, 62) (2)
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where ry = (r1, 61, @1), 2= (r2, 82, ¢2) and we need to determine the coeficients a,,,,; in
the above equation. The main point of the above equation is that these coefficients do
not depend upon the magnetic quantum numbers m;, m,, m and the angles 6;, ¢4, 6,
¢, involved in the problem.

Using the orthonormality of the spherical harmonics, we find

(h, my; Iy, ma|l, mdauy
= I Yim (PLX 1) YT, (81, $1) Y Fom, (82, 62) A1 A, (3a)

where
dQ =sin 6 dé do. (3b)
We choose the special values of the magnetic quantum numbers

m1=11, m2=l“11, m=1
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Thus
(I, Iy by T=1)l Da g, = J)’zz(h Xr) Y, (61, ¢1) Yy, (82, ¢2) dQy dQ,. 4)

In terms of the spherical polar coordinates
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of ry X rp, we see that

|P1X 7] sin 6 exp(io) = —iryra(sin 6; cos 6, exp(ic1) —cos 8, sin 6, explig,)). (5)
Now
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and
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where we have used equations (2.5.17) and (2.5.29) in Edmonds (1960).
On making use of the equations (4)-(6) above and performing the trivial ¢4, ¢»
integrations after expanding

(sin 8, cos 8, exp(ig1) — cos 6, sin 6, exp(id,))’
in a binomial series, we arrive at
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where the function % is defined by
hn)=1 if n is a non-negative integer ®)

=0 otherwise.
Now
T - LITGU - L+ 1)]
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whereas
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(equation (7.132(5)) in Gradshteyn and Ryzhik (1965)).
Combining equations (7) and (9), using the duplication formula
1
F(2z)=#1/2222_11"(z)F(z +3) (10)
for the gamma function and
@I Q21+ 1) )”2
. _ = 1
ho b by L= Bl 1) ((11—12+1)z(11+12+1+ H! (1)

(equation (3.6.13) in Edmonds 1960), we finally arrive at equation (1) above on noting
the relationship

/
(s oy ol = (1m0 2 D)

mima—m

between the Clebsch—Gordan coefficients and the Wigner 3; symbols (Edmonds 1960,
equation (3.7.3)).

The author is grateful to Professor M Kibler of the Institut de Physique Nucléaire,
Université Claude Bernard for communicating the results obtained by his group before
publication.
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