Simple derivation of a formula for $y_{I m}\left(r_{1} \times r_{2}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 132631
(http://iopscience.iop.org/0305-4470/13/8/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:42

Please note that terms and conditions apply.

Simple derivation of a formula for $y_{l m}\left(r_{1} \times r_{2}\right)$

M A Rashid
Mathematics Department, Ahmadu Bello University, Zaria, Nigeria

Received 6 March 1980

Abstract. A simple and straightforward derivation of an expression recently obtained by Hage Hassan et al for $y_{l m}\left(\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right)$ in terms of $Y_{l_{1 m 1}}\left(\theta_{1}, \phi_{1}\right)$ and $Y_{l_{2} m_{2}}\left(\theta_{2}, \phi_{2}\right)$ is presented.

Hage Hassan et al (1980) have recently obtained the interesting result

$$
\begin{align*}
y_{l m}\left(\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right)= & (-1)^{m-\frac{1}{2}}[4 \pi(2 l+1)]^{1 / 2}\left(\frac{1}{2} r_{1} r_{2}\right)^{l} \sum_{l_{1} m_{1} l_{2} m_{2}} 2^{l_{1}+l_{2}} \\
& \times\left[\frac{\left(2 l_{1}+1\right)\left(2 l_{2}+1\right)\left(l_{1}-l_{2}+l\right)!\left(-l_{1}+l_{2}+l\right)!\left(l_{1}+l_{2}+l+1\right)!}{\left(l_{1}+l_{2}-l\right)!}\right]^{1 / 2} \\
& \times \frac{\left[\frac{1}{2}\left(l_{1}+l\right)\right]!\left[\frac{1}{2}\left(l_{2}+l\right)\right]!}{\left[\frac{1}{2}\left(l-l_{1}\right)\right]!\left[\frac{1}{2}\left(l-l_{2}\right)\right]!}\binom{l_{1} l_{2} l}{m_{1} m_{2}-m} Y_{l_{1} m_{1}}\left(\theta_{1}, \phi_{1}\right) Y_{l_{2} m_{2}}\left(\theta_{2}, \phi_{2}\right) \tag{1}
\end{align*}
$$

and used it to obtain a possibly new sum rule for the $3 j$ symbols. It seems that both of their derivations are involved. We are presenting below a simple and straightforward derivation which avoids making use of various generating functions which are not so well known.

Indeed from structural considerations
$y_{l m}\left(\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right)=\sum_{l_{1} m_{1} l_{2} m_{2}}\left\langle l_{1}, m_{1} ; l_{2}, m_{2} \mid l, m\right\rangle a_{l_{1} l_{2} l} Y_{l_{1} m_{1}}\left(\theta_{1}, \phi_{1}\right) Y_{l_{2}, m_{2}}\left(\theta_{2}, \phi_{2}\right)$
where $r_{1}=\left(r_{1}, \theta_{1}, \phi_{1}\right), r_{2}=\left(r_{2}, \theta_{2}, \phi_{2}\right)$ and we need to determine the coefficients $a_{l_{1} l_{2} l}$ in the above equation. The main point of the above equation is that these coefficients do not depend upon the magnetic quantum numbers m_{1}, m_{2}, m and the angles $\theta_{1}, \phi_{1}, \theta_{2}$, ϕ_{2} involved in the problem.

Using the orthonormality of the spherical harmonics, we find $\left\langle l_{1}, m_{1} ; l_{2}, m_{2} \mid l, m\right\rangle a_{l_{1} l_{2} l}$

$$
\begin{equation*}
=\int y_{l m}\left(\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right) Y_{l_{1} m_{1}}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{l_{2} m_{2}}^{*}\left(\theta_{2}, \phi_{2}\right) \mathrm{d} \Omega_{1} \mathrm{~d} \Omega_{2} \tag{3a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{~d} \phi \tag{3b}
\end{equation*}
$$

We choose the special values of the magnetic quantum numbers

$$
m_{1}=l_{1}, \quad m_{2}=l-l_{1}, \quad m=l .
$$

Thus
$\left\langle l_{1}, l_{1} ; l_{2}, l-l_{1} \mid l, l\right\rangle a_{l_{1} l_{2} l}=\int y_{l l}\left(\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right) Y_{l_{1} l_{1}}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{l_{2}-l_{1}}^{*}\left(\theta_{2}, \phi_{2}\right) \mathrm{d} \Omega_{1} \mathrm{~d} \Omega_{2}$.
In terms of the spherical polar coordinates

$$
\left(\left|\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right|, \theta, \phi\right)
$$

of $\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}$, we see that
$\left|\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right| \sin \theta \exp (\mathrm{i} \boldsymbol{\phi})=-\mathrm{i} \boldsymbol{r}_{1} \boldsymbol{r}_{2}\left(\sin \theta_{1} \cos \theta_{2} \exp \left(\mathrm{i} \boldsymbol{\phi}_{1}\right)-\cos \theta_{1} \sin \theta_{2} \exp \left(\mathrm{i} \boldsymbol{\phi}_{2}\right)\right)$.
Now

$$
\begin{align*}
& y_{l l}\left(\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right)=(-1) \frac{1}{2^{l} l!}\left(\frac{(2 l+1)!}{4 \pi}\right)^{1 / 2}\left(\left|\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}\right| \sin \theta \exp (\mathrm{i} \phi)\right)^{l} \tag{6a}\\
& Y_{l_{1} l_{1}}^{*}\left(\theta_{1}, \phi_{1}\right)=(-1)^{l_{1}} \frac{1}{2^{l_{1} l_{1}!}\left(\frac{\left(2 l_{1}+1\right)!}{4 \pi}\right)^{1 / 2}\left(\sin \theta_{1} \exp \left(-\mathrm{i} \phi_{1}\right)\right)^{l_{1}}} \tag{6b}
\end{align*}
$$

and

$$
\begin{equation*}
Y_{l_{2} l-l_{1}}^{*}\left(\theta_{2}, \phi_{2}\right)=(-1)^{l-l_{1}}\left(\frac{\left(2 l_{2}+1\right)\left(l_{1}+l_{2}-l\right)!}{4 \pi\left(-l_{1}+l_{2}+l\right)!}\right)^{1 / 2} P_{l_{2}}^{l-l_{1}}\left(\cos \theta_{2}\right) \exp \left[-\mathrm{i}\left(l-l_{1}\right) \phi_{2}\right] \tag{6c}
\end{equation*}
$$

where we have used equations (2.5.17) and (2.5.29) in Edmonds (1960).
On making use of the equations (4)-(6) above and performing the trivial ϕ_{1}, ϕ_{2} integrations after expanding

$$
\left(\sin \theta_{1} \cos \theta_{2} \exp \left(\mathrm{i} \phi_{1}\right)-\cos \theta_{1} \sin \theta_{2} \exp \left(\mathrm{i} \phi_{2}\right)\right)^{l}
$$

in a binomial series, we arrive at

$$
\begin{align*}
&\left\langle l_{1}, l_{1} ; l_{2}, l-l_{1} \mid l, l\right\rangle a_{l_{1} l_{2} l} \\
&= h\left(l-l_{1}\right)\left(\frac{\left(2 l_{2}+1\right)\left(2 l_{1}+1\right)!(2 l+1)!\left(l_{1}+l_{2}-l\right)!}{\left(-l_{1}+l_{2}+l\right)!}\right)^{1 / 2} \\
& \times \pi^{1 / 2}\left(\mathrm{ir}_{1} r_{2}\right)^{l}(-1)^{l_{1}} \frac{1}{2^{l_{1}+l_{2}+1} l_{1}!l_{1}!\left(l-l_{1}\right)!} \\
& \times \int_{0}^{\pi} \sin ^{\left(2 l_{1}+1\right)} \theta_{1} \cos ^{\left(l-l_{1}\right)} \theta_{1} \mathrm{~d} \theta_{1} \int_{0}^{\pi} \sin ^{\left(l-l_{1}+1\right)} \theta_{2} \cos ^{l_{1}} \theta_{2} P_{l_{2}}^{l-l_{1}}\left(\cos \theta_{2}\right) \mathrm{d} \theta_{2} \tag{7}
\end{align*}
$$

where the function h is defined by

$$
\begin{align*}
h(n) & =1 & & \text { if } n \text { is a non-negative integer } \tag{8}\\
& =0 & & \text { otherwise } .
\end{align*}
$$

Now
$h\left(l-l_{1}\right) \int_{0}^{\pi} \sin ^{\left(2 l_{1}+1\right)} \theta_{1} \cos ^{\left(l-l_{1}\right)} \theta_{1} \mathrm{~d} \theta_{1}=h\left[\frac{1}{2}\left(l-l_{1}\right)\right] \frac{l_{1}!\Gamma\left[\frac{1}{2}\left(l-l_{1}+1\right)\right]}{\Gamma\left[\frac{1}{2}\left(l+l_{1}+3\right)\right]}$
whereas

$$
\begin{align*}
h\left[\frac{1}{2}\left(l-l_{1}\right)\right] \int_{0}^{\pi} & \sin ^{\left(l-l_{1}+1\right)} \theta_{2} \cos ^{l_{1}} \theta_{2} P_{l_{2}}^{l-l_{1}}\left(\cos \theta_{2}\right) \mathrm{d} \theta_{2} \\
= & h\left[\frac{1}{2}\left(l-l_{1}\right)\right] \int_{-1}^{1} x^{l_{1}}\left(1-x^{2}\right)^{\frac{1}{2}\left(l-l_{1}\right)} P_{l_{2}}^{l-l_{1}}(x) \mathrm{d} x \\
= & (-1)^{l-l_{1}} 2^{-l+l_{1}} h\left[\frac{1}{2}\left(l-l_{2}\right)\right] \\
& \times \frac{\Gamma\left(\frac{1}{2} l_{1}+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} l_{1}+1\right)\left(-l_{1}+l_{2}+l\right)!}{\left[\frac{1}{2}\left(l-l_{2}\right)\right]!\left(l_{1}+l_{2}-l\right)!\Gamma\left[\frac{1}{2}\left(l+l_{2}+3\right)\right]} \tag{9b}
\end{align*}
$$

(equation (7.132(5)) in Gradshteyn and Ryzhik (1965)).
Combining equations (7) and (9), using the duplication formula

$$
\begin{equation*}
\Gamma(2 z)=\frac{1}{\pi^{1 / 2}} 2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{10}
\end{equation*}
$$

for the gamma function and

$$
\begin{equation*}
\left\langle l_{1}, l_{1} ; l_{2}, l-l_{1} \mid l, l\right\rangle=\left(\frac{\left(2 l_{1}\right)!(2 l+1)!}{\left(l_{1}-l_{2}+l\right)!\left(l_{1}+l_{2}+l+1\right)!}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

(equation (3.6.13) in Edmonds 1960), we finally arrive at equation (1) above on noting the relationship

$$
\left\langle l_{1}, m_{1} ; l_{2}, m_{2} \mid l, m\right\rangle=(-1)^{l_{1}-l_{2}+m}(2 l+1)^{1 / 2}\left(\begin{array}{ll}
l_{1} & l_{2} \\
m_{1} m_{2}-m
\end{array}\right)
$$

between the Clebsch-Gordan coefficients and the Wigner $3 j$ symbols (Edmonds 1960, equation (3.7.3)).

The author is grateful to Professor M Kibler of the Institut de Physique Nucléaire, Université Claude Bernard for communicating the results obtained by his group before publication.

References

